RAW SEQUENCE LISTING

The Biotechnology Systems Branch of the Scientific and Technical Information Center (STIC) no errors detected.

Application Serial Number:	/0/543.003
Source:	, Py/10
Date Processed by STIC:	8/2/05

ENTERED

PCT

RAW SEQUENCE LISTING DATE: 08/02/2005 PATENT APPLICATION: US/10/543,003 TIME: 15:04:50

```
3 <110> APPLICANT: Ono, Yuichi
              Nakagawa, Yasuko
      5
              Sakamoto, Yoshimasa
      7 <120> TITLE OF INVENTION: Lrp4/Corin DOPAMINERGIC NEURON
             PROLIFERATIVE PROGENITOR CELL MARKERS
     11 <130> FILE REFERENCE: 082368-004900US
C--> 13 <140> CURRENT APPLICATION NUMBER: US/10/543,003
C--> 13 <141> CURRENT FILING DATE: 2005-07-22
     13 <150> PRIOR APPLICATION NUMBER: PCT/JP04/000629
     14 <151> PRIOR FILING DATE: 2004-01-23
     16 <150> PRIOR APPLICATION NUMBER: JP 2003-016790
     17 <151> PRIOR FILING DATE: 2003-01-24
     19 <160> NUMBER OF SEQ ID NOS: 14
     21 <170> SOFTWARE: FastSEO for Windows Version 4.0
     23 <210> SEO ID NO: 1
     24 <211> LENGTH: 4864
     25 <212> TYPE: DNA
     26 <213> ORGANISM: Mus musculus
     28 <400> SEQUENCE: 1
                                                                               60
     29 ctagtcccca ggcagacggt ccctcactcc tgtggcttgg cgtcggagac gctggcagtc
     31 atgggcaggg tttccttcag cgttcgggtc agctccgtgc ggagagcccg ctgctcttgt
                                                                              120
                                                                              180
     33 cctgggcgat gctacctctc ctgcagagtc cctccaacca ccgccctccg tgcactgaac
                                                                              240
     35 ggtcttggct gcgcgggggt tccgggggag actgcaggtg gagccgtcgg acccggcccc
                                                                              300
     37 ttggggaccc gtggcttcct ctccgggtcc aagttccagg ctcccggcag ctggaaggat
     39 tgctttggag ccccgcctgc tccagacgtc ttgagagcag acaggagcgt gggcgagggc
                                                                              360
                                                                              420
     41 tgtcctcaga agctggtgac tgctaacttg ctgcgcttcc tcctgctggt gctcatcccc
                                                                              480
     43 tgcatctgcg ccctcatcgt gctgctggcc atcctgctgt cctttgtggg aacattaaaa
     45 agggtttatt tcaaatcaaa tgacagtgaa cctttggtca ctgatgggga agctcgagtg
                                                                              540
     47 cetggtgtta tteetgtaaa tacagtttat tatgagaaca caggggegee etetetgeee
                                                                              600
     49 cccagccagt ccactccagc ctggacaccg agageteett ctccagagga ccagagteac
                                                                              660
                                                                              720
     51 aggaacacaa gcacctgcat gaacatcact cacagccagt gtcaaattct gccctaccac
                                                                              780
     53 agcacqttqq cacctctctt qccaattqtc aaaaacatqq acatqqaqaa qttcctcaaq
     55 ttetteaegt acctecateg ceteagttge tateaacata teetgetett eggetgtage
                                                                              840
                                                                              900
     57 ctcgccttcc ctgagtgcgt tgttgatggc gatgacaggc atggtcttct accctgtaga
                                                                              960
     59 tetttetgtg aggetgeaaa agaaggatge gaatetgtee tgggaatggt gaacteetee
                                                                             1020
     61 tggccggatt ccctcagatg ctctcagttt agggaccaca ctgagactaa cagcagtgtc
                                                                             1080
     63 agaaagagct gcttctcact gcagcaggaa catggaaagc aatcactctg tggagggggc
     65 gagagettee tgtgtaceag egggetetge gteeceaaga agetgeagtg taaeggetat
                                                                             1140
     67 aatgactgtg atgactggag cgacgaggcg cattgcaact gcagcaagga tctgtttcac
                                                                             1200
     69 tgtggcacag gcaagtgcct ccactacagc ctcttgtgtg atgggtacga tgactgtggg
                                                                             1260
     71 gacccgagtg acgagcaaaa ctgtgattgt aatctcacaa aagagcatcg ctgtggagat
                                                                             1320
                                                                             1380
     73 gggcgctgca ttgcggctga gtgggtgtgc gatggggacc atgactgtgt ggacaagtct
     75 gatgaggtca actgetettg teacageeag ggeetggtgg aatgeacaag tggacagtge
                                                                             1440
```

RAW SEQUENCE LISTING

DATE: 08/02/2005 PATENT APPLICATION: US/10/543,003 TIME: 15:04:50

77	atccctagca	ccttccagtg	tgatggggac	gaagactgta	aggatgggag	tgacgaggag	1500
			gccatgtcca				1560
81	tgcgtcgaat	cctgtgctgg	tagctctctg	tgtgactcag	acagcagcct	gagtaactgc	1620
			tttggaactc				1680
85	tatccaaatt	accttggcca	cagaactcaa	aaggaagcgt	ccatcagctg	ggagtcatcc	1740
			aaccaactgt				1800
89	attttggttc	caaagtgtga	tgtgaataca	ggacaacgca	tcccqccttq	cagactcctg	1860
91	tgtgagcact	ccaaagagcg	ctgtgagtct	gttctgggaa	tcgttggcct	gcagtggcct	1920
			atttccagag				1980
			atgctctccg				2040
			tgacggccag				2100
			agctctttgg				2160
						aaaaaactgc	2220
						gcgtgacctt	2280
						figigaccete	2340
						ggaacaccac	2400
						gatgggttta	2460
						gctgaggttg	2520
						atacaggcac	2580
						tggccgccgc	2640
						tgggaggtgg	2700
						tgtcctcatt	2760
						cgctgatgtt	2820
						gcagacccgc	2880
						ctatgatatc	2940
						: tgtcťgccta	3000
129	cccagtccgg	aggagtatct	agaaccagat	acqtactqct	acatcacago	ctggggccac	3060
						ccctctggag	3120
			catgaagacc				3180
						ttgtgaacga	3240
						cttttccaaa	3300
			cagcaatgtg				3360
						tttgtgggga	3420
143	aacctacatg	gagaatgaco	: ctctgaaaca	gaagettgte	ctgccaagag	ctgtacgaac	3480
						ttgtgctaga	3540
			atctcttca				3600
						gaatgtagtg	3660
						agaaagctcc	3720
			acacacggag				3780
			gcacatttca				3840
158	gtagaaagcc	aagagaatat	atatgctttt	attatttact	ctactcttct	aaataacttq	3900
			gaaaggaccc				3960
			caaccaaact				4020
			taaaatctcc				4080
			actgtgatgt				4140
			tgaataagaa				4200
			taacattcca				4260
			aagttacaga				4320
174	atggagtata	taacatttta	caatttcccc	ctcatgatgt	ctaacatcco	gtattgccat	4380
				, ,	_		_

RAW SEQUENCE LISTING DATE: 08/02/2005
PATENT APPLICATION: US/10/543,003 TIME: 15:04:50

176	ttgcctcatt	gataattaaa	actaaatttt	aaggatgctt	ttaagcactg	ggccacttta	4440						
178	tgggaatcaa	ttcccaaagc	aattagtggt	tacaagtatt	ttttcccact	aaaaagtttc	4500						
180	aaaacacaaa	ccttcatact	aaattaatta	gccagacatg	aactatgtaa	catgcaaatg	4560						
		caagtaggat					4620						
184	tgcttacagg	gactacctgc	aattttatat	gtgtattttg	tactcttttt	ctagatagtt	4680						
186	caaatgcaaa	acattgtttc	aacccctatt	ctccatgttg	ttcacctctt	gtcctggaat	4740						
		gtgtgtgtag					4800						
		tcggttttgt					4860						
	tggg		_			-	4864						
195	<210> SEQ :	ID NO: 2											
196	6 <211> LENGTH: 4933												
197	7 <212> TYPE: DNA												
198	8 <213> ORGANISM: Homo sapiens												
200	<400> SEQUI	ENCE: 2											
201	aaatcatccg	tagtgcctcc	ccgggggaca	cgtagaggag	agaaaagcga	ccaagataaa	60						
		agaataagcg					120						
205	gaagagcgct	accgcagagc	cgggtcccca	aagccggtct	tgagagctga	tgacaataac	180						
207	atgggcaatg	gctgctctca	gaagctggcg	actgctaacc	tcctccggtt	cctattgctg	240						
210	gtcctgattc	catgtatctg	tgctctcgtt	ctcttgctgg	tgatcctgct	ttcctatgtt	300						
212	ggaacattac	aaaaggtcta	ttttaaatca	aatgggagtg	aacctttggt	cactgatggt	360						
214	gaaatccaag	ggtccgatgt	tattcttaca	aatacaattt	ataaccagag	cactgtggtg	420						
216	tctactgcac	atcccgacca	acacgttcca	gcctggacta	cggatgcttc	tctcccaggg	480						
218	gaccaaagtc	acaggaatac	aagtgcctgt	atgaacatca	cccacagcca	gtgtcagatg	540						
		acgccacgct					600						
222	aagttcctca	agtttttcac	atatctccat	cgcctcagtt	gctatcaaca	tatcatgctg	660						
		ccctcgcctt					720						
		ggtccttctg					780						
		cctggccgga					840						
		gcagaatttg					900						
		agaactttct					960						
		acgactgtga					1020						
		gtcacacagg					1080						
		atttgagtga					1140						
		ggcgctgcat					1200						
		acgaggtcaa					1260						
		tccccagcac					1320						
		actgcagcgt					1380						
		gccttgattc		_			1440						
		gtcaatgtga					1500						
		atccaaatta					1560						
		ttttccctgc					1620						
		ttttggtacc					1680						
		gtgaacactc					1740						
		aagacacaga					1800						
		ctgatgaata					1860						
		ttctggcttc					1920						
		actgtggttg					1980						
		acacagtgat					2040						
210	aaaaactgct	cattttgcca	agatgatgag	ccggaatgtg	caaaccatgc	grgrgrgrca	2100						

RAW SEQUENCE LISTING DATE: 08/02/2005 PATENT APPLICATION: US/10/543,003 TIME: 15:04:50

```
272 cqtqacctgt ggtgtgatqq tqaaqccqac tgctcaqaca qttcaqatqa atqqqactqt
                                                                         2160
274 gtgaccetet ctataaatgt gaacteetet teetttetga tggtteacag agetgeeaca
                                                                         2220
276 gaacaccatg tgtgtgcaga tggctggcag gagatattga gtcagctggc ctgcaagcag
                                                                         2280
278 atgggtttag gagaaccatc tgtgaccaaa ttgatacagg aacaggagaa agagccgcgg
                                                                         2340
280 tggctgacat tacactccaa ctgggagagc ctcaatggga ccactttaca tgaacttcta
                                                                         2400
282 gtaaatgggc agtcttgtga gagcagaagt aaaatttctc ttctgtgtac taaacaagac
                                                                         2460
284 tgtgggcgcc gccctgctgc ccgaatgaac aaaaggatcc ttggaggtcg gacgagtcgc
                                                                         2520
286 cctggaaggt ggccatggca gtgttctctg cagagtgaac ccagtggaca tatctgtggc
                                                                         2580
288 tgtgtcctca ttgccaagaa gtgggttctg acagttgccc actgcttcga ggggagagag
                                                                         2640
290 aatgctgcag tttggaaagt ggtgcttggc atcaacaatc tagaccatcc atcagtgttc
                                                                         2700
292 atgcagacac gctttgtgaa gaccatcatc ctgcatcccc gctacagtcg agcagtggtg
                                                                         2760
294 gactatgaca tcagcatcgt tgagctgagt gaagacatca gtgagactgg ctacgtccgg
                                                                         2820
296 cctgtctgct tgcccaaccc ggagcagtgg ctagagcctg acacgtactg ctatatcaca
                                                                         2880
298 ggctggggcc acatgggcaa taaaatgcca tttaagctgc aagagggaga ggtccgcatt
                                                                         2940
300 atttetetgg aacattgtea gteetaettt gaeatgaaga eeateaeeae teggatgata
                                                                         3000
                                                                         3060
302 tgtgctggct atgagtctgg cacagttgat tcatgcatgg gtgacagcgg tgggcctctt
304 gtttgtgaga agcctggagg acggtggaca ttatttggat taacttcatg gggctccgtc
                                                                         3120
306 tgcttttcca aagtcctggg gcctggcgtt tatagtaatg tgtcatattt cgtcgaatgg
                                                                         3180
                                                                         3240
308 attaaaagac agatttacat ccagaccttt ctcctaaact aattataagg atgatcagag
                                                                         3300
310 acttttgcca gctacactaa aagaaaatgg ccttcttgac tgtgaagagc tgcctgcaga
                                                                         3360
312 gagetgtaca gaageaettt teatggaeag aaatgeteaa tegtgeaetg caaatttgea
314 tgtttgtttt ggactaattt ttttcaattt atttttcac cttcattttt ctcttatttc
                                                                         3420
                                                                         3480
316 aagttcaatg aaagacttta caaaagcaaa caaagcagac tttgtccttt tgccaggcct
318 aaccatgact qcaqcacaaa attatcqact ctqqcqaqat ttaaaatcaq qtqctacaqt
                                                                         3540
                                                                         3600
320 aacaggttat ggaatggtct cttttatcct atcacaaaaa aagacataga tatttaggct
322 gattaattat ctctaccagt ttttgtttct caagctcagt gcatagtggt aaatttcagt
                                                                         3660
324 gttaacattg gagacttgct tttctttttc ttttttata ccccacaatt cttttttatt
                                                                         3720
326 acacttcgaa ttttagggta cacgagcaca acgtgcaggt tagttacata tgtatacatg
                                                                         3780
328 tgccatgttg gtgtgctgaa cccagtaact cgtcatttga tttattaaaa gccaagataa
                                                                         3840
330 tttacatgtt taaagtattt actattaccc ccttctaatg tttgcataat tctgagaact
                                                                         3900
                                                                         3960
332 gataaaagac agcaataaaa gaccagtgtc atccatttag gtagcaagac atattgaatg
334 caaagttett tagatateaa tattaacaet tgacattatt ggaceeecca ttetggatgt
                                                                         4020
336 atatcaagat cataatttta tagaagagtc tctatagaac tgtcctcata gctgggtttg
                                                                         4080
339 ttcaggatat atgagttggc tgattgagac tgcaacaact acatctatat ttatgggcaa
                                                                         4140
                                                                         4200
341 tattttgttt tacttatgtg gcaaagaact ggatattaaa ctttgcaaaa gagaatttag
343 atgagagatg caatttttta aaaagaaaat taatttgcat ccctcgttta attaaattta
                                                                         4260
345 tttttcagtt ttcttgcgtt catccatacc aacaaagtca taaagagcat attttagagc
                                                                         4320
                                                                         4380
347 acagtaagac tttgcatgga gtaaaacatt ttgtaatttt cctcaaaaga tgtttaatat
349 ctggtttctt ctcattggta attaaaattt tagaaatgat ttttagctct aggccacttt
                                                                         4440
351 acgcaactca atttctqaaq caattagtqq taaaaaqtat ttttccccac taaaaaactt
                                                                         4500
353 taaaacacaa atcttcatat atacttaatt taattagtca ggcatccatt ttgcctttta
                                                                         4560
355 aacaactagg attocctact aacctccacc agcaacctgg actgcctcag cattccaaat
                                                                         4620
357 agatactacc tgcaatttta tacatgtatt tttgtatctt ttctgtgtgt aaacatagtt
                                                                         4680
359 gaaattcaaa aagttgtagc aatttctata ctattcatct cctgtccttc agtttgtata
                                                                         4740
361 aacctaagga gagtgtgaaa tccagcaact gaattgtggt cacgattgta tgaaagttca
                                                                         4800
                                                                         4860
363 agaacatatq tcaqttttqt tacaqttqta qctacatact caatqtatca acttttaqcc
365 tgctcaactt aggctcagtg aaatatatat attatactta ttttaaataa ttcttaatac
                                                                         4920
                                                                         4933
367 aaataaaatg gta
370 <210> SEQ ID NO: 3
```

RAW SEQUENCE LISTING DATE: 08/02/2005
PATENT APPLICATION: US/10/543,003 TIME: 15:04:50

372	<21	1> LI 2> Ti	YPE:	PRT	113 Mus	mus	ວນໄນ	5								
		0> SI					Julu									
376 377		Gly	Arg	Val	Ser 5	Phe	Ser	Val	Arg	Val 10	Ser	Ser	Val	Arg	Arg 15	Ala
379 380	Arg	Cys	Ser	Cys 20	Pro	Gly	Arg	Cys	Tyr 25	Leu	Ser	Cys	Arg	Val 30	Pro	Pro
382 383	Thr	Thr	Ala 35	Leu	Arg	Ala	Leu	Asn 40	Gly	Leu	Gly	Cys	Ala 45	Gly	Val	Pro
	Gly	Glu 50	Thr	Ala	Gly	Gly	Ala 55	Val	Gly	Pro	Gly	Pro 60	Leu	Gly	Thr	Arg
	_		Leu	Ser	Gly	Ser 70		Phe	Gln	Ala	Pro 75		Ser	Trp	Lys	Asp 80
		Phe	Gly	Ala	Pro 85		Ala	Pro	Asp	Val 90		Arg	Ala	Asp	Arg 95	
	Val	Gly	Glu	Gly 100	Cys	Pro	Gln	Lys	Leu 105		Thr	Ala	Asn	Leu 110		Arg
	Phe	Leu	Leu 115		Val	Leu	Ile	Pro 120		Ile	Cys	Ala	Leu 125		Val	Leu
	Leu	Ala 130		Leu	Leu	Ser	Phe 135		Gly	Thr	Leu	Lys 140		Val	Tyr	Phe
403	Lys 145		Asn	Asp	Ser	Glu 150		Leu	Val	Thr	Asp		Glu	Ala	Arg	Val 160
		Gly	Val	Ile	Pro 165		Asn	Thr	Val	Tyr 170		Glu	Asn	Thr	Gly 175	
	Pro	Ser	Leu	Pro 180	Pro	Ser	Gln	Ser	Thr 185		Ala	Trp	Thr	Pro 190		Ala
	Pro	Ser	Pro 195		Asp	Gln	Ser	His 200		Asn	Thr	Ser	Thr 205		Met	Asn
	Ile	Thr 210		Ser	Gln	Cys	Gln 215		Leu	Pro	Tyr	His 220		Thr	Leu	Ala
419	Pro 225		Leu	Pro	Ile	Val 230		Asn	Met	Asp	Met 235		Lys	Phe	Leu	Lys 240
		Phe	Thr	Tyr	Leu 245		Arg	Leu	Ser	Cys 250		Gln	His	Ile	Leu 255	
	Phe	Gly	Cys	Ser 260	Leu	Ala	Phe	Pro	Glu 265		Val	Val	Asp	Gly 270		Asp
			Gly 275	Leu	Leu	Pro		Arg 280		Phe	Cys		Ala 285	Ala	Lys	Glu
					Val	Leu				Asn	Ser				Asp	Ser
			Cys	Ser	Gln	Phe 310		Asp	His	Thr	Glu 315		Asn	Ser	Ser	Val 320
		Lys	Ser	Cys	Phe 325		Leu	Gln	Gln	Glu 330		Gly	Lys	Gln	Ser 335	
	Cys	Gly	Gly	Gly 340	Glu	Ser	Phe	Leu	Cys 345		Ser	Gly	Leu	Cys 350		Pro
	Lys	Lys	Leu		Cys	Asn	Gly	Tyr		Asp	Cys	Asp	Asp		Ser	Asp

VERIFICATION SUMMARY

DATE: 08/02/2005

PATENT APPLICATION: US/10/543,003

TIME: 15:04:51

Input Set : A:\082368-004900US.txt

Output Set: N:\CRF4\08022005\J543003.raw

L:13 M:270 C: Current Application Number differs, Replaced Current Application No

L:13 M:271 C: Current Filing Date differs, Replaced Current Filing Date